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Abstract—Based on the advancements in iterative learning
control (ILC), this paper proposes a novel approach tailored
for linear hybrid systems with iteration-varying references. By
extending previous research, the method accurately estimates all
system modes, even if there are mode transitions with iteration-
varying mode transition time, ensuring precise calculation of
control inputs. The estimation begins by identifying the first
mode and decoupling it from the next mode to facilitate accurate
estimation. The mode estimator and control law were mathemat-
ically proven to converge with increasing iterations, a conclusion
further supported by simulations validating their performance.

Index Terms—iterative learning control, linear hybrid system,
iteration-varying, mode transition

I. INTRODUCTION

To enhance the performance of controllers, there are meth-
ods to utilize model information and provide feedback using
sensor signals effectively. Another approach is to utilize past
control information. Iterative learning control is a technique
that performs well when conducting repetitive control tasks
[1], [2]. There are various types of controllers that leverage
past control information. However, unlike other learning tech-
niques, such as machine learning and reinforcement learn-
ing, Iterative Learning Control (ILC) possesses a significant
advantage in intuitively demonstrating mathematical conver-
gence. Moreover, aiming for perfect tracking through repetitive
control enhances the transient performance of the control
system. Hence, it is extensively used in applications involving
repetitive tasks, such as robots, automated processes, and
chemical processes [3]—[5]. Nonetheless, it is essential to note
that ILC exhibits good performance only under considerably
restrictive conditions, which limits its effectiveness.

ILC is commonly applied in situations where the same task
is performed repeatedly. Consequently, it often applies only
under conditions with identical initial conditions, references,
and repetitive disturbances. Numerous research efforts have
been undertaken to mitigate these restrictive conditions. Re-
search has proposed methods such as initial rectification to
address the challenge of adapting to initial conditions that vary
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with each iteration [6], [7]. Various methods have been pro-
posed to eliminate disturbances, such as employing observers
to estimate and remove different disturbances encountered
in each iteration [8], [9]. Research efforts have also been
undertaken to apply ILC to changing references rather than
fixed ones. The most common approach involves utilizing
existing data to identify the parameters of the system model,
enabling adaptation to changing references. Since this method
involves modeling estimation, it allows for generating feed-
forward inputs for variously changing references, ensuring
convergence as the number of trials increases. In the case of
a linear system, it is possible to estimate the system model by
estimating the system’s Markov parameters, as Oh proposed
[10]. For nonlinear systems cases, a model is established by
iteratively estimating the model’s parameters in the iteration
domain using adaptive methods [11]-[13]. However, existing
research addressing iteration-varying references has limita-
tions. Previous studies have only addressed cases where the
system remains unchanged or changes at the same time in
each iteration. System changes often depend on the state in
many situations, necessitating new research to address these
scenarios.

Existing methods commonly encounter divergence in hybrid
systems that undergo changes midway. Research on applying
ILC to hybrid systems is scarce. KD Mishra proposed ILC for
hybrid systems and applied it to vehicle gearshift control [14],
[15]. However, it is limited to situations where all references
remain unchanged. Research on classifying systems in linear
hybrid systems is a significant field, utilizing system inputs
and outputs for classification [16], [17]. Apart from estimator
design and learning, various methods exist for this purpose.
Mainly, considerable research is done on identifying switched
linear systems, often involving generating residuals and using
them to estimate modes through mode estimators [18], [19].
However, for mode estimation, this method typically requires
a system model of the system’s modes, posing a challenge for
applications like ILC, where the system model is primarily
unknown.

This paper proposes an Iterative Learning Control (ILC) ap-
proach for linear hybrid systems that can converge even when
the reference changes. Building upon Oh’s ILC method for
linear systems with changing references [10], this paper aim



to ensure convergence even when the system changes during
the control period. Unlike previous research, which assumed
the system changes simultaneously or does not change in each
iteration, the proposed method addresses situations where the
system changes dependently on its state and output, which is
typical in hybrid systems. Based on input and output data,
estimate the system of the first mode and then estimate the
subsequent mode’s system within the iteration domain based
on the estimated first mode system.

Bayesian approach for model identification, the focus is
on modeling uncertainty. This method estimates the poste-
rior probability distribution of system parameters and model
structure based on observed data, but this process requires
numerical techniques and significant computational effort [21],
[22]. In contrast, the proposed method optimizes the model
parameters through an iterative learning process. Leveraging
iterative data aims to estimate a more accurate model with the
advantage of faster convergence. In conclusion, the proposed
method is advantageous for quickly improving performance in
iterative environments compared to the Bayesian approach.

Ultimately, this paper demonstrates the convergence of
errors as the number of control iterations increases, confirming
this effect through examples. While the proposed method
applies to hybrid systems with two modes, it can be extended
to hybrid systems with multiple modes.

II. PROBLEM FORMULATION

Consider the discrete-time linear hybrid system as follows:

xp(t+1) = Ajxp(t) + Biug(t)
yi(t) = Cizk(t),

where ¢ is the discrete time steps, k is the iteration number,
and ¢ = 1...p is the number of system mode. z € R™ is the
system state variables. ©w € R™ is the system input. y € R is
the system output.

Assumption 1: The system mode is dependent on the system

output Y, ;1 < yi(t) <= Y, ;. If the system output y () lies
between the residual of the (i — 1)th mode, denoted as Y, ;_1
and the residual of the ith mode, denoted as Y, ;, then the
system is in the ¢th mode. It is assumed that the reference
values determining the system modes, Y, ;_1, are known in
advance.
Therefore, this chapter introduces a method for estimating the
system matrix of a hybrid system. Then use this estimation to
propose a method for designing control inputs in the iteration
domain to converge the error to zero.

If control is executed for the same duration in each iteration
starting from the initial condition x,(0) = 0, the hybrid system
described above can be represented as the following lifted
system as

(D

Y, = GUy. 2

where Y}, and Uy, are

Y=l of@ - yf )"
Ur=[uf(0) wf() - wf(N-1)]",

and system matrix G* € RINX™N g represented as
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where s, = Nf — p. Also in the paper, although there is the
possibility of expanding the system’s modes, for simplicity,
only the case with two modes(i = 1,2) is discussed.

The objective of the control input wug(t) at times ¢
[0,1,...,T — 1] is to maintain uniform boundedness across
all iterations and to accurately follow the iteration-varying
reference 7 (t) at times ¢ : [0,1, ..., 7] as k goes infinity.

If the system is a linear system and not a hybrid system,
Gy, consists only of G}, without G% and G}2. Then according
to Oh’s proposed method, updating the control input as (4)
results in the tracking error converging to zero as the iteration
number increases.

U1 = Uk + Hi(Ryp+1 — Yi) @
Hy, =G,

where R, = [rf(1) rf(2) - r;‘f(N)]T. The matrix
gain Hj used in (4) is based on the inverse of the plant,
denoted as G,;l. It calculates the required input for the next
iteration by inversely computing the input needed between the
rk+1 and the yi. With Oh’s proposed method alongside (4),
it is possible to estimate g; and calculate G, in the iteration
domain using (5) [10]. g; is the reverse of the last row of
G i, and by estimating it, G ;, can be calculated. For further
details and convergence analysis regarding this, please refer to
Oh’s method.

g1k =g1k-1+ Y1k —g1r-101x) P s

- &)
Py = Ul,li



where Y1 i, g1, and Uy j, are

g1 = |:01B1 ClAlBl cee OlAivj_lBl}

Yie = [u(1) we(2) Ye(NY)]
_ 0 ur(0) wug(l) up(N7 —2)
Urk=1 . : . :

0 0 0 i (0)

This method cannot directly apply to the plant in (1). In
the case of a linear system that is not a hybrid system, g
can be estimated in the iteration domain based on (5) because
the g remains constant in the iteration domain. However, in a
hybrid system, the timing of mode transitions changes when
the reference changes. As a result, the g changes with each
mode transition, making it impossible to estimate g in the
same manner as before. Since the length of mode 1 varies with
each iteration due to the changing reference, G7 and G2 also
changes accordingly. Therefore, updates cannot be performed
because the number of times A; and A, contained in gy vary
each iteration.

III. ESTIMATION AND CONTROL DESIGN

This section introduces methods for estimating system ma-
trix G in linear hybrid systems, as well as control design
and convergence analysis. The proposed method can be briefly
examined through a schematic diagram 1. Existing research
methods are utilized in estimation. Specifically, the estima-
tion process employs techniques mentioned in the previous
section, such as Oh’s estimation method and the Eigenvalue
Realization Algorithm (ERA). The estimation process involves
estimating the system of the first mode and using it to
determine the A;, B;, and C; matrices of system mode 1
in iterative learning identification 1. These matrices are then
utilized to identify the second mode of the system using the
proposed method in iterative learning identification 2, then
ultimately resulting in accurately estimating G for control
purposes.

g () yie(t)

System
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Reformulation

Memory
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identification
Controller whica

Fig. 1: Schematic of ILC for linear hybrid system

Since Iterative Learning Identification 1 and the Eigen-
value Realization Algorithm (ERA) utilize existing research
methods, a brief mention of them will suffice. This section
introduces the methods for estimating the second mode system
and discusses convergence analysis.

A. Identification Mode 1 and ERA

For System mode 1, using existing methods allows us to
estimate the Markov parameter g;. Since g; does not change
in the iteration domain, using (5) enables us to estimate its
actual value. Since the timing of system mode changes varies
with each iteration, the size of g; changes with each iteration,
and updates are conducted according to its size. Subsequently,
employing the Eigenvalue Realization Algorithm (ERA) algo-
rithm on the estimated Markov parameter allows us to obtain
the system matrices A and B in (1). However, in this study,
the requirement is not for individual A; and B; matrices
but for the controllability matrix R.. Using singular value
decomposition as shown in (6), R, can be obtained from H (0).

CB CAB CAM/2p
CAB CA2B CANi/2+1p
H(0) =
CANi2B AN/ CAN B

= PDQT ~ P,D,QF

R.=|B AB A2’B ANi/2=1g| = DL2QT
(6)
where n is the degree of the system. It is important to note that
the length of mode 1 varies with each iteration, thus the value
of NY also changes accordingly in each iteration. As the size of
H(0) increases, R, obtains a more accurate value. Therefore,
R, is not updated every iteration; instead, it is updated when

the length of mode 1 exceeds that of the previous lengths.

B. Identification Mode 2

As shown in (2) and (3), the output of system mode 2
is influenced not only by the system’s Mode 2 matrices, Ao
and Bs, but also by the dynamics of system mode 1 and the
moments of mode transition. Therefore, direct estimation is not
feasible, and decoupling is required to remove the influence
of the remaining parts except for system mode 2.

The output for mode 2 can be expressed as follows, based
on (2) and (3).

NI
yr(N7 +m) = ZCgAQ”A{VJ*SBluk(S -1)
=t (7
+)  CoAY Bour(NY + 5 — 1),
s=1

For simplicity, denote ur = Z?’;l A{W*SBluk(s —1). up
is composed entirely of known values, and can be calculated
using R, as



ur = Rcﬁk = D,,l/Z ?;Uk
Up = [ug(N7 — 1) up(N7 —2)

Then, using (7), Y5 ;, can be rewritten as

r ©®

= CoATur + Y CoA3Byur(N7 + 5 — 1)

s=1

yk(Nj +m)

YQ,k = QQUZ,kv
_ _ )
where Y5 ., g2, and Us j, are
Yo, = [yn(N/ +1) yr(N7 +2) yk(N)]T
go = [CQBQ CQAQ CQAQBQ CQA% CQA%BQ }

uk(Nj+1) uk(Nj+2) uk(N)
ur 0 0
_ 0 uk (N7 + 1) ug(N — 1)
Usp = 0 ur 0
i 0 0 ug |

The zeros adjacent to ur in the matrix ﬁg,k represent zero
matrices adjusted to the size of up. By rearranging the output
y(N7 4+ m) as in (9), it is possible to separate the go that
influences only system mode 2 using up. Since ur can be
computed via R. as shown in (8), it can be separated into
known and unknown parts of )727 k. Like g1, g2 remains con-
stant in the iteration domain, allowing the design of estimation
techniques for convergence in the iteration domain as (10).

G2k+1 =92k + (Yo — 92.k-1Ua 1) Pa g

o (10)
P2 k= UQ /i
Similarly to the approach used for system mode 1, by setting
P2,k‘ - U2 ks
to zero as k i increases, as depicted in (11).
U-
192 = g2, k+1 111Uz, k41 I (an

<llg2 = g2.klll1 = Uz k- Po k|| |U2 k41 1]-

However, unlike system mode 1, the presence of zero
matrices in 027 & indicates that it is not full rank. Consequently,
even if U. ; ,i is multiplied to }72 &, an accurate determination of
g2 is impossible. Therefore, data accumulation in the iteration
domain and collective updates are implemented. Iterations are
combined in intervals equivalent to the sum of the matrix size
of Cy By and CyA,. For instance, if Cy By is 1x 1 and Cy A, is
1x 2, updates occur once every third iteration (i.e., at iterations
1,4,7,---). In conclusion (10) can be rewritten as follows.

92,20+ 1)+1 = 92,2k+1 + (Yar — 92,6-1Uz1) P
sz: = U;k17
where z is the sum of the matrix size of C2By and C2A,.
The Y, and U, are

12)

= 5 5 - T

YVie = [Yi Yin Yitz—1]

Ue = [Ux Upsa Uktzo—1] -
C. Control design and convergence analysis

Using the obtained plant information, we can design an ILC
logic that converges to zero error as the iteration number k
increases, as follows:

Uk+1 Y)

Hi 1

where Gj and Gj41 can be constructed using the esti-
mated g1 and go ) obtained previous section. In estimat-
ing G41, considering the system matrices (41, B1,C1) and
(Ag, Ba, C5) is crucial, but it is equally important to anticipate
the timing of mode changes. The mode changing time can
be determined using (13), where Hj replaces H, and

= H ' \HyUy + Hi ' (R — 13
= Gry1

k+1’
estimated y obtained by multiplying U with G}, is utilized to
compute the timing. This approach is feasible because mode
transitions are determined by output, implying that they are
solely affected by the system of the previous mode and inputs
up to the transition. Therefore, whether using £+ 1 or k makes
little difference.

Theorem 1: When the input law specified in (13) for the
hybrid linear system with evolving reference is utilized, the
tracking error converges along the iteration axis.

Proof 1: The tracking error(Ry1 — Yi41) can be expressed
as
= Rk+1 = Gr1Upyr. (14)

Rit1 — Y

Let G, = Hy, + €1,k> Gk-',-l k+1 =1+ €2k where €1 ko €2k
are the estimation error. Using (13), (14) can be rewritten as

Riy1— Y
= Riy1 — Grpr(H )  Hi U + HiZly (Riyr — Ya))
= Rip1 — Vi — Grpn Hy )y (R — i)
+ (e1,5 + €2, Hi) Uy
(15)

By adding and subtracting Ry, + Gk+1HI;L11Rk to (16) and
let (€1 + €2,,Hi)Uy = 0k, Riy1 — Ry = ARjp4q. Then it
can be simplified as

€L+1

=(I — G H Y )ew + (I — Gr Hi
k k+1l—j

(I = Gip HipY Jer + Z H I —GiiHi ' )ARj 4

JARg 41 +

—.

Il
-

K2

e
e
|

-1 j
+ (I- Gl+1H+1)5 + 0.
j=1i=1

(16)

As k increases, based on (5) and (12), g1 and go

respectively converge to g; and go, allowing the accurate

determination of Gy. Since Hy, = Gy, ||I — G1+1H+1|| <1

and is almost close to zero. Additionally, as estimation error

0 converges to zero as k increases, it is confirmed that the
tracking error eventually converges to zero.




IV. NUMERICAL EXAMPLES

In this section, the proposed method’s effectiveness is
validated using the linear hybrid system previously employed
in existing studies [20].

The mass-spring-damper system, composed of two modes,
can be schematically illustrated as depicted in Fig.2.

control input

Fig. 2: The Schematic diagram of the linear hybrid system

M denotes the cart’s mass, spring constant is k£ and damping
coefficient is ¢. The system’s input u represents the force
exerted on the cart, while the output y is the distance from
the starting point. y,.; marks the point of mode transition in
the system. For the continuous system, the system matrix is

0 1 0 1
Al = I:_kl _01:| 7A2 = |:_k1+k'2 _cates |
M M M M
B {9} .C=[1 0],
M
where the model parameters are set to M = lkg, ky =

100Nm, ko = 50Nm, ¢; = 0.7Nm/s, ca = 0.3Nm/s. Two
simulations were conducted, with the reference changing for
each iteration. The criterion for mode transition in the output
Yr,1, 18 set to 0.6. Additionally, the reference is not set to revert
to the previous mode.

In the first simulation, the shape of the reference remained
consistent, while only the magnitude varied from each it-
eration. For the second simulation, both the frequency and
magnitude of the reference were set to vary with each iteration.

r1(t,k) = p1(k)sin(0.017(t — 1))
ra(t, k) = pi (k) sin(0.01pa (k) (t — 1)),

where p; (k) ranges from 1 to 1.5, and po (k) ranges from 1 to
1.7, both being rational numbers. The sum of the matrix sizes
of C9sBy and Cs A, is 3, so updates were performed every
third iteration.

Fig. 3 demonstrate the convergence of reference 1. As the
value of k increases, it is evident that the tracking error
converges well to 0. At the 300th iteration, the output precisely
follows the reference. However, the system fails to track the
reference in the initial step due to its second-order relative
degree. As the number of iterations progresses, there are in-
stances where the error converges to O and then reappears. The
primary reason for this is when mode transitions occur outside
the range previously learned, necessitating new learning and
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Fig. 3: Simulation results for reference 1

resulting in errors. The learned data determine the lengths of
g1 and go. If mode transitions occur at points not previously
encountered, either shorter or longer, it requires updating g,
and go accordingly. The simulation results show that the
model maintains a smooth output despite midway changes.
This is due to the influence of the sampling time; the actual
simulation result is not continuous but consists of discrete
values plotted. At the point where the model changes, the
results between sampling times may exhibit abrupt variations
rather than smooth transitions. To address this, the system
should be controlled with a smaller sampling time.

Fig. 4 depicts the results for reference 2. Similar to reference
1, it can be observed that the error converges to zero as the
number of iterations increases. In Fig. 4b This can also be
observed in Fig. 3a, where occasional minor errors (0.05)
occur instead of perfect convergence to zero. This discrepancy
arises from errors in predicting when the model will change,
despite the model converging accurately.
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V. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

This paper proposes an Iterative Learning Control (ILC)
logic capable of converging for Linear Hybrid Systems with
iteration-varying references. Advancing previous research, The
proposed method estimates the first mode and then decouples
it from the subsequent modes using the estimated system
mode 1, enabling accurate estimation of the following mode.
The convergence of both the mode estimator and the iterative
learning control law is proven. Through simulations, the
effectiveness of proposed method is verified.

B. Future Works

This study has the advantage of applying linear hybrid
systems, but many areas still need improvement. Firstly, it
is essential to predict model transitions’ timing accurately.
Although the proposed method resulted in minor errors when

precise prediction was not achieved, there is room for im-
provement to ensure convergence to zero error. Secondly,
further advancement is needed to develop a logic that can
converge even when the criteria(output) for model transitions
are unknown.
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